Friday worksheet 5 – identifying redox reactions through oxidation numbers.

A redox reaction is composed of two reactions occurring simultaneously, the oxidation and the reduction half reactions. The oxidation reaction produces electrons while the reduction reactions accepts electrons. For each of the following identify the redox reactions by identifying the:

- Atom being reduced (justify your answer using oxidation numbers)
- Atom being oxidised (justify your answer using oxidation numbers)
- The reductant (is the atom being oxidised or the compound that contains the atom being
- The oxidant (is the atom being reduced or the compound that contains the atom being reduced)
- a. $HCl(a) + H_2O_{(l)} \rightarrow H_3O^+(aq) = Cl(aq)$ No not a redox reaction. No change in oxidation state of any species reacting.
- b. $2AgNO_3(aq) + Cu(s) \rightarrow Cu(NO_3)_2(aq) + Ag(s)$

Yes this is a redox reaction.

Ag is being reduced from Ag^+ in $AgNO_3$ to Ag (s). Oxidation state changes from +1 (Ag^+ (aq)) to 0 (Ag(s)). Cu(s) is oxidised to Cu^{2+} . Oxidation state changes from 0 (Cu(s)) to +2 in Cu^{2+} (ag). The reductant is Cu while the oxidant is AgNO₃

c. $CH_4(g) + O_2(g) \rightarrow CO_2(g) + H_2O(1)$

Yes this is a redox reaction.

O is being reduced from O_2 to O^{2-} . Oxidation state changes from 0 ($O_2(g)$) to -2 ($H_2O(I)$). CH_4 is oxidised to CO_2 . Oxidation state of C changes from -4 in CH_4 to +4 in CO_2 . The reductant is CH_4 while the oxidant is O_2

d. $2Fe_2O_3(s) + 3C(s) \rightarrow 3CO_2(g) + 4Fe(s)$

Yes this is a redox reaction.

Fe is being reduced from Fe^{3+} to Fe(s). Oxidation state changes from +3 (Fe_2O_3) to 0 (Fe(s)). C is oxidised to CO_2 . Oxidation state of C changes from 0 in C(s) to +4 in CO_2 . The reductant is C(s) while the oxidant is Fe_2O_3

e. $4MnO_4^-(aq) + 12H^+(aq) + 5CH_3CH_2OH(aq) \rightarrow 5CH_3CO_2H(aq) + 4Mn^{2+}(aq) + 11H_2O(I)$

Yes this is a redox reaction.

Mn is being reduced from Mn^{7+} to Mn^{2+} . Oxidation state changes from +7 (MnO_4) to +2 $(Mn^{2+}).$

C is oxidised from +2 in CH₃CH₂OH to 0 in CH₃COOH The reductant is CH₃CH₂OH while the oxidant is MnO₄⁻

f. $2HCl(aq) + Zn(s) \rightarrow H_2(g) + ZnCl_2(aq)$

Yes this is a redox reaction.

H is being reduced from +1 to 0. Oxidation state changes from +1 (HCl) to 0 (H_2). Zn is oxidised from 0 in zn(s) to +2 in ZnCl₂ The reductant Zn while the oxidant is HCl

g. $H_2SO_4(aq) + Na_2CO_3(aq) \rightarrow CO_2(g) + H_2O(l) + Na_2SO_4(aq)$ No not a redox reaction. No change in oxidation state of any species reacting